6.100B: Recitation 5 Regressions, Overfitting, & Machine Learning

May 5th, 2023

Actionables

PS3 Checkoff due at **5pm** today

PS4 Checkoff start today, due on Friday, 5/12 at 5pm

Microquiz 4 on Wednesday, 5/10 in-class

Curve Fitting Linear Regressions R² Overfitting

Machine Learning Training / Testing Datasets Evaluation

Let's get started!

https://mattfeng.tech/teaching/6.100B

generalize it to a hypothesized **trend**

hypotheses based on data we're collecting

- The purpose behind curve-fitting is to take **data we have** and
- We can then use that **trend** to predict the nature of a system
- It is an important way of mathematically creating and optimizing

Anscombe's Quartet is an example of the significance of

Each graph depicts a linear regression of the data in orange that minimizes our mean squared error (MSE)

graphical analysis in producing generalizable models for data

How can we generate general models for fitting data?

the error between our predictions and reality?

We'll think about this problem by asking how do we minimize

Given a linear regression with a **single input variable** and a error:

$$f(x) = \sum_{i}^{\infty} c_i x^i$$

Or if we ignore terms i > 1 (linear fit):

 $f(x) = c_1 x + c_0$

single output variable, there exists a curve that minimizes the

- c_1 and c_0 ?
- We are looking to minimize the **error**, or **loss function**
- or the Coefficient of Determination

What exactly are we minimizing? How do we choose coefficients

A more informative measurement of a model's fit is actually R^2 ,

sum squared regression (SSR)

total sum of squares (SST)

 $R^2 = 1 - \frac{\text{sum squared regression (SSR)}}{\text{total sum of squares (SST)}}$

 $R^2 = 1 - -$

Where \hat{y}_i is our **predicted value** for input *i*, and \bar{y} is our **average** output

$$\frac{\sum_{i}^{n} (y_i - \hat{y}_i)^2}{\sum_{i}^{n} (y_i - \bar{y})^2}$$

SSR is the **mean squared error** of our sample batch:

SSR =

 $SSR = \sum_{i=1}^{n} (observed[i] - predicted[i])^2$

We can see that maximizing R^2 means **minimizing the SSR**

$$\sum_{i}^{n} (y_i - \hat{y}_i)^2$$

We can define our **objective function** (also called a **loss**) function) we'd like to minimize as our SSR divided by the

 $J(c) = \frac{1}{N}$

Or for our linear model:

 $J(c_1, c_0) = \frac{1}{N} \sum_{N}$

number of samples to effectively minimize our per sample error

$$\sum_{i}^{N} \left(y_{i} - \hat{y}_{i} \right)^{2}$$

$$\sum_{i}^{N} \left(y_{i} - (c_{1}x_{i} + c_{0}) \right)^{2}$$

One way to minimize our objective function $J(c_1, c_0)$ is with gradient descent.

them based on how much they contribute to the error

To update these coefficients, we can subtract their contribution to the error:

We can initialize our coefficients with random values, and adjust

$$c_i := c_i - \epsilon \frac{\partial J(c)}{\partial c_i}$$

- $C_i := C$
- Where ϵ is the **step size** in the direction of error. For stable adjustments, we want this to be small. For a linear model:

 $J(c_1, c_0) = \frac{1}{N} \sum_{N=1}^{N} \sum_{N=1$ $\partial J(c)$ 1 d ∂c_i $N dc_i$

$$C_i - \epsilon \frac{\partial J(c)}{\partial c_i}$$

$$\sum_{i=1}^{N} \left(y_{i} - (c_{1}x_{i} + c_{0}) \right)^{2}$$

$$\sum_{j=1}^{i} \left(y_{j} - c_{1}x_{j} - c_{0} \right)^{2}$$

- $c_1 := c_1 \epsilon \left| -\frac{2}{N} \right|$
 - $c_0 := c_0 \epsilon \left[-\frac{2}{N} \right]$

 $J(c_1, c_0) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - (c_1 x_i + c_0) \right)^2$

$$\sum_{i=1}^{N} \left(y_{i} - c_{1} x_{i} - c_{0} \right) x_{i}$$

$$\frac{2}{N}\sum_{j}^{N}\left(y_{j}-c_{1}x_{j}-c_{0}\right)$$

Curve Fitting | Linear Regressions Let's try a **linear regression** on an Order-1 dataset with step-size 0.1:

Curve Fitting | Linear Regressions Let's try a **linear regression** on an Order-1 dataset with step-size 0.1:

Curve Fitting | Linear Regressions Let's try a **linear regression** on an Order-1 dataset with step-size 0.1:

What's happening here?

Our step size is far too large, and our steps away from the objective function overcompensate each coefficient's contribution!

What about a step size of 0.01:

What about a step size of 0.01:

What about a step size of 0.01:

After only **3 passes** of our data, our model has a great fit!

We can generalize this approach to systems of **higher degrees** as well!

 $J(c_2, c_1, c_0) = \frac{1}{N} \sum_{i}^{N}$

We take the same approach for updating coefficients of higher degrees:

$$c_{2} := c_{2} - \epsilon \left[-\frac{2}{N} \sum_{i}^{N} \left(y_{j} - c_{2} x_{i}^{2} - c_{1} x_{i} - c_{0} \right) x_{i}^{2} \right]$$

$$(y_i - (c_2 x_i^2 + c_1 x_i + c_0))^2$$

In this example we take a **5th degree** linear regression on a noisy **1st degree** dataset:

Although we have a high R^2 , and potentially a lot higher than

complex enough to directly touch each datapoint, we'll converge on $R^2 = 1$

But we know this is bad because our data often contains **noise**!

- the linear fit if we keep training, the model is **not generalizable**
- If we train and test on the same data, and our model is infinitely 4.0

Curve Fitting | Overfitting

dataset, and not the system that it comes from

Therefore, we must evaluate the model on data we did not train on

We need to **dissuade our model from** overfitting

This phenomenon is known as **overfitting**, and when we only train a model on the same training data, we're fitting it to that

Curve Fitting | Overfitting

and how much data we have (hyperparameter tuning)

To prevent **overfitting** and keep our model generalizable, we have to tune the degree of our model to the shape of the data,

Curve Fitting | Overfitting

Curve Fitting | Machine Learning

testing data

The ultimate goal of regression is to create a model that particular range by using a lower order model)

The higher order data may end up using much of its "extra" generalize well as we introduce more data!

Although the 10th-order model had a better R^2 than the 2nd-Order on the training set, it performed much worse when exposed to new

- hypothesizes the behavior of a system (maybe even linearizes a
- dimensionality to fit the noise instead of the data, which will **not**