6.100B: Recitation 4 Distributions, Simulation, and Significance Testing

April 28th, 2023

Actionables

PS5 is released on **Monday**, 5/1

PS4 is due on Thursday, 5/4

PS3 Checkoff is due on Friday, 5/5 by 5pm

Microquiz 3 on Wednesday, 5/3 in-class

Distributions

Uniform vs. Gaussian Discrete Distributions Expected Value

Simulations The Dice Problem

Let's get started!

https://mattfeng.tech/teaching/6.100B/

Distributions | Uniform Distributions

problems we simulate

A common case that we may see in problems is **uniform** probability distributions

We need to be able to model **randomness** and its effects on

Value

Distributions Uniform Distributions

For **Discrete Probability Distributions**, we have finite number of values in our domain (we can't roll a 4.2 or 5.7)

equal likelihood

A uniform probability density considers all outcomes to be of

Value

Distributions Discrete Distributions

Consider we have **two** dice, we'd like to determine the distribution for each **sum** of the two dice rolls

total possible outcomes

Rolling a 1 Impossible

- For each outcome, we need to determine the number of ways the outcome can occur, and find the ratio between that and the

Distributions Discrete Distributions

Consider we have **two** dice, we'd like to determine the distribution for each **sum** of the two dice rolls

total possible outcomes

Rolling a 2 One possibility

- For each outcome, we need to determine the number of ways the outcome can occur, and find the ratio between that and the

Distributions | Discrete Distributions

Consider we have **two** dice, we'd like to determine the distribution for each **sum** of the two dice rolls

total possible outcomes

Rolling a 3 Two possibilities

- For each outcome, we need to determine the number of ways the outcome can occur, and find the ratio between that and the

Distributions | Discrete Distributions

Consider we have **two** dice, we'd like to determine the distribution for each **sum** of the two dice rolls

total possible outcomes

Rolling a 4 Three possibilities

- For each outcome, we need to determine the number of ways the outcome can occur, and find the ratio between that and the

Distributions Discrete Distributions

Here we see the **number of possibilities** for two-dice sum rolls:

Distributions | Probability Distributions

Given the **36** possible outcomes, we can turn this into a **probability distribution** by dividing the number of possible ways the event can happen by the **total outcomes**

Distributions | Probability Distributions

What is the **expected value** of this roll?

Possible Outcomes

outcome of a system (like rolling two dice)

E[X]

the value associated with that outcome

Expected Value is the outcome we can **expect** to be the average

$$= \sum_{i} p_{i} v_{i}$$

In which **p** is the probability of outcome **i** of event **X**, and **v** is

The expected value for a single die roll is:

- $E[\text{Die Roll}] = \frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6}$ $E[\text{Die Roll}] = \frac{21}{6} = 3.5$

Expected Value is like a weighted average based on the likelihood of outcomes to happen

- $E[2 \text{ Die Roll}] = 1\frac{2}{36} + 2\frac{3}{36} + 3\frac{4}{36} + 4\frac{5}{36} + 5\frac{6}{36} + 6\frac{7}{36} + 5\frac{8}{36} + 4\frac{9}{36} + 3\frac{10}{36} + 2\frac{11}{36} + 1\frac{12}{36}$
 - E[2 Die Roll] = 7

we get in practice?

Now if we roll two dice and add the sum, what's the distribution

Now if we roll two dice and add the sum, what's the **distribution** we get in practice?

Now if we roll two dice and add the sum, what's the **distribution** we get in practice?

Now if we roll two dice and add the sum, what's the **distribution** we get in practice?

Okay, we collected a bunch of data – now what?

results are **significant** (i.e. likely signal and not just noise).

For example, could we figure out if another player is using weighted dice?

- We can use **statistical tests** to determine whether or not our

Fair or unfair?

2000 ·

2500

1500 ·

Unfair

1000 ·

500

Fair or unfair?

Unfair

Fair or unfair?

If you're going to accuse someone of cheating, you need to be able to back up your claims

How do we tell them apart? Namely with **95% confidence?**

We can perform a statistical test (called a z-test) to evaluate whether the dice.

95% confidence that the means of two **normal distributions** are different

our dice roles approaches a normal distribution

sample mean of the fair dice differs the from the sample mean of the weighted

- The z-test let's us determine whether or not we have enough data to claim with
- Because of the Central Limit Theorem, the distribution of the **sample means** of
- **Confidence intervals** give the ranges we believe the true means of the dice lie.

weighted, fair

weighted, fair